巴蜀网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

同板块主题的 前一篇 同板块主题的 后一篇
开启左侧
 楼主: 王德奎|查看: 17129|回复: 15
[自然科学

解读张守晟和文小刚

 [复制链接]
11#
 楼主|王德奎 发表于: 2013-11-6 21:20:11|只看该作者
1)为什么是多“模具”的综合或说“共生”,这是有特定的类似“盲人社会”与非盲人的严格限制。“盲人摸象”的成语讽刺的是我们社会中看问题的片面,以偏代全。但我们社会盲人只是少数,所以“模具”说到底是“实事求是”。即宏观的人作为非盲人,对现实事物有唯一性认识的追求,确定性是模具的特征之一,这也许就是唯物辩证法讲的真理。但到微观王国,我们与量子社会的“微观人”相比,全部变成了“盲人”,怎么办?这里“盲人摸象”实事求是用多“模具”,比睁眼说瞎话倒更接近成真理。

2)模具是唯一好还是全息好?极小子流形切割到哪里?萨斯坎德在《黑洞战争》一书中说,今天一大批杰出的著名理论物理学家来自阿根廷、巴西和智利,而且有的还是左派人士,连南美洲人自己都不大相信,但又是事实。问题是马德西纳和张颖清都是搞全息原理的,南美洲和中国也都是发展中国家,但两者的遭遇和成就却不尽相同,为什么?还有王存臻等人沿袭张颖清把全息原理或全息律定位于“部分与整体相似”,并止步于这一现象做模具推进宇宙全息。张颖清、王存臻不喜欢全息原理或全息律涉及极小子流形的微观认知太深奥的数学和量子物理。大多数的人也不容忍超越他们喜欢的简单的模型,热衷于传统文化,拒绝或尤其排斥文章太过专业,原因是什么?是外国,特别是二次大战日本疯狂的侵略,造成数百万人的牺牲;其次,是国内在大跃进三年自然灾害时期类似数百万人的饥荒。这两场中华民族历史上的刻骨铭心的大事,给中国科学灌注了“实事求是”的灵魂,也带来人文的巨大分离和反作用。

A)战争带来科学太深奥的数学和量子物理,把量子中国的唯物辩证法推进到类似高能物理学,但其多模具涉及太深奥的数学和量子物理,使大多数人太生疏,留恋于传统文化,对数学化的东西不感兴趣,尤其排斥文章太过专业,拒绝非常自然;但日本等军国主义不会因为拒绝就不侵略,就同情。杨振宁和李政道先生都说在抗日战争中,他们无法完成正常的中小学和大学教育,仇恨才激发他们对高科技有了兴趣。

B)和平年代、政权稳固、粮储充足,自然灾害发生大面积长时间的饥荒,历史少见。为什么传统文化可行的简单的人们感兴趣的赛诗、比决心之类,堆不起钢山、粮山?因为钢铁和粮食需要的科学更要求“实事求是”。饥荒中袁隆平先生在大山里的农校,愤起苦研生物遗传基因的排序、组合,发展出水稻杂交育种的新模式。1961年我们初中毕业回到农村当代课老师,把在饥荒中失学的儿童一个个找回教室。在教学中重温读小学时晃过的算术,才知初中的代数、几何,是在另辟计算管用的多模式。

C)简单没有错,兴趣没有错,但对模具的应接不暇和删繁就简大有学问。哲学物质无限可分,极小子流形止步于部分与整体相似,何祚庥同志得出的是层子模型,希格斯得出的是质量粒子。然数学量子的微积分是连续的,物理的微积分量子是间断的,却都没错。为啥多模具的量子极小子流形之间可以相悖?要点是能出有成效的应用。

9、激光全息追问极小子流形,也是“盲人社会”。类似“盲人摸象”费曼提出了著名的粒子历史遍历求和的费曼图计算方法。联系“全息”遍历求和,有“部分与整体相似”、“减维靠界”、“两者相干”等三种模具。如把它们比作奥运金牌赛,首届奥运赛中,张颖清没有得冠军,马德西纳得了冠军。不要紧,奥运会不是只开一届。

1)其实,咖啡环效应和卡西米尔平板效应的机械原理,跟张颖清的“部分与整体相似”全息原理或全息律一样朴素,也能从宏观深入到微观,我们也可以把咖啡环效应和卡西米尔平板效应看着全息有“部分与整体相似”现象,现在要讲的是有成效的应用。因为我们研究量子色动力学已经有数十年,发展出三旋、量子色动化学等一套处理方法。三旋量子色动力学就是一种多模具,而适用的有成效的运用要求在纳米原子级以上。

2)联系元素原子有效成分的识别,是原子核中的质子数。联系咖啡环效应,极小子流形应是球形粒状最好。应用费曼的粒子遍历求和方法,以多面体的顶点数代换质子数,趋圆性删繁就简最好的是规则的多面体,而规则的正多面体只有5种。即正4面体、正6面体、正8面体、正12面体、正20面体。对应化学元素原子的质子数,分别是质子数为4的铍原子、质子数为8的氧原子、质子数为6的碳原子、质子数为20的钙原子、质子数为12的镁原子。费曼的粒子遍历求和方法的意思是“所有”,包括可能的情况,甚至是想象的路线,都应对它们逐一“关照”。即把5种正多面体顶点数逐一加倍,再对应化学元素原子的质子数,可做成第一类量子色动化学元素周期表。

3)联系卡西米尔平板效应,极小子流形应是平行平面最基本的多面体或平行平面数最多最基本的正多面体最好。检查第一类量子色动化学元素周期表,平行平面最基本的多面体是顶点数为6的五面体,对应化学元素原子质子数为6的是碳原子;它区别于碳原子质子数为6做成的正8面体。把质子数为6逐一加倍,再对应化学元素原子的质子数,可做成第二类量子色动化学元素周期表。

12#
 楼主|王德奎 发表于: 2013-11-6 21:20:35|只看该作者
▲温馨提示:图片的宽度最好1800 像素,目前最佳显示是 900 像素,请勿小于 900 像素▲
4)平行平面数最多最基本的正多面体极小子流形,联系卡西米尔平板效应最好的多面体,检查第一类量子色动化学元素周期表是8顶点数的正6面体,对应化学元素原子质子数为8的是氧原子。把质子数为8逐一加倍,再对应化学元素原子的质子数,可做成第三类量子色动化学元素周期表。其中汞原子核的质子数为80;镉原子核的质子数为48,都能被8整除。联系碲化汞/碲化镉这两类拓扑绝缘体,是很能说明问题的。

10、从费曼的粒子遍历求和的费曼图方法,到伯恩、狄克逊和科索维尔等人的幺正方法,并没有分明的对与错,代表的是同一基本物理过程在不同描述层次的不同表述,看重的都是所有可能路线加起来的概率,只是幺正方法删繁就简比费曼方法能极大地减少计算规模。今天我们的量子色动化学方法也开始加入这场“奥运赛”,删繁就简选择分辩是看在量子色动化学元素周期表的三种类表中,出现的失效概率占多少?由此更能极大地减少寻找超导、拓扑绝缘体以及碳勒烯球笼、碳烯纳米管、石墨烯薄膜等材料的计算规模,对其机理进行简要的解读。

1)化学元素原子核作为一个独立系统,原子核内的质子群落有没有类似的晶体结构?目前没有定论。量子色动化学此类的探索,外围的最新实验可联系用于量子计算的核自旋观测:核自旋与电子自旋不同,核自旋与环境有很好的隔离。实验让我们看到,内置于一个单分子磁体中的一个金属原子的长寿命的核自旋,且能够确定自旋状态的动态。实验在短时间内可重复2000次阅读同样的原子核自旋数据,证明对存储信息来说,原子核自旋比电子自旋更好。因为电子自旋容易被周围的电子和原子内的温度所改变。而坐落在原子中心的原子核的自旋不会被电子云所影响,能更好地长时间存储信息。

其次复旦大学的龚新高小组的实验,也让我们看到了32个金原子可组成一个笼形分子。32这个笼形顶点数,正能被8整除,使卡西米尔平板效应具有很高的识别度。因为卡西米尔效应拉力类似一种振动,极大地增强了量子粒子咖啡环效应向界面的扩散、翻转能力。而6这个正六边顶点数,能被6整除,同理使石墨烯薄膜、碳勒烯球笼、碳烯纳米管等也成为卡西米尔效应和咖啡环效应合流的名片。

2)我们可以进一步大胆设想,原子核外围所谓的电子轨道或电子云圈层,是否也有电子颗粒的模具属圆球形状的因素,而悬浮沉积停留在原子边界面的各层呢?

3)在基本粒子模型中,电子和光子都分别属于一种独立的粒子,但在粒子散射或衰变反应中,一个光子可以变成一个正电子和一个负电子,反过来一个正电子和一个负电子湮灭可以又变回一个光子,这似乎与基本粒子模型有矛盾。但从多模具论出发,我们也可以进一步大胆设想,光子像航空母舰,一个正电子和一个负电子类似它配备的两种航母飞机,就不和基本粒子模型有矛盾,而且还能与大量子论的巴拿马船闸的希格斯场模型联系起来。希格斯粒子是一种大质量的量子,光子却没有静止质量,恰形成了一种大小的对偶。类似的对偶,可以设想希格斯粒子像潜艇,两个引力子像majorana粒子是潜艇配备的类似两鱼雷。如此,在粒子的形态模具上,光子像航空母舰,希格斯粒子像潜艇,也正好属于同一级的对应。

部分图片、文章来源于网络,版权归原作者所有;如有侵权,请联系(见页底)删除
13#
 楼主|王德奎 发表于: 2013-11-6 21:20:59|只看该作者
125.9GeV的希格斯粒子质量与顶夸克质量175GeV在大型强子对撞机上矛盾,我们说过类似“谷仓内的标枪悖论”的讨论。由此我们把希格斯运河的船闸模具调换成“希格斯谷仓”模具,但如果光子像航空母舰,可以配备搭载一个正电子和一个负电子类似的两架航母飞机,那么和光子像航空母舰对应,是否希格斯粒子作为一种特殊的玻色子也能配备搭载类似两架航母飞机的基本粒子呢?这里有两个事实可联系:一是希格斯粒子本身藏在希格斯场,类似核动力潜艇可以长时间不出水面;另外希格斯场能产生质量,而引力联系重力与质量相关,那么这两者结合起来,希格斯粒子是否类似核动力潜艇,而且类似光子配备搭载两个电子,也能配备搭载两个引力子作类似鱼雷的发射呢?即希格斯粒子还有核动力潜艇的模具描述,和不同的费曼图描述呢?

4)在伯恩、狄克逊和科索维尔等三人的幺正方法中,他们已经证实了这种想法:从幺正方法得到的结果,引力子看上去像是交织在一起的两个胶子。这种双胶子特征为科学家提供了一个全新的视角:在希格斯粒子类似核动力潜艇发射鱼雷的模具描述下:“一种新的统一引力途径的费曼图,一个引力子可以看成一个胶子与它的孪生兄弟的合体,就像两人三足赛跑一样,步调一致地协同运作”。

三旋理论初探从点邻域到圈邻域,是原子论到孤子链推导的理论基础,其内核与极小子流形有关。牛顿原子论与马赫孤子链的自发对称破缺的咖啡环效应,起源于当代物理学中最着迷的是规范不变性与时空几何结构的关系。对此曹天予先生主张综合科学发展观和以概念革命转换新旧理论之间的变化。以此出发,当代物理学中的前沿理论物理学综合之一,是弦膜圈说。普朗克尺度的“线元”弦论,规范不变性扩容为局域不变性的电磁量子相位的不变性。这里表达弦论线元的单位是长度;而扩容的相位不变,实际类似“圈”旋的圈论。普朗克的量子论,实际类似原子论的概念革命的转换。那么在前沿理论物理学综合的弦膜圈说中,代替原子论的模具扩容,就是中国原生态的“孤子链”。

但这两者联系的量子场纲领和规范场纲领的场论的“场”,实际类似“膜”。以上就是弦膜圈说的来历,但这太抽象和数学化。现实中,原子论、量子论、弦膜圈说最可定量观测的是物体可称重量的质量。质量从何而来?联系原子论、量子论、场论就涉及马赫的惯性概念革命。如果从牛顿的质点惯性几何看着原子论图像,那么细想马赫的时空惯性几何,实际类似已扩容为孤子链图像。

孤子链如何与质量起源联系,1997年美国物理学家西德尼•纳高和托马斯•威腾等人在《自然》杂志上发表的关于“咖啡环效应”的论文,如果把希格斯机制联系“咖啡环效应”现象,玄机是针对暗藏的普适对称性与自发对称破缺原理。而孤子链在规范场论的“膜”中的地位,正类似咖啡环效应的玄机。量子极小子流形的咖啡环效应是否也类似极性效应的倒向实验随机超弦微分方程?如是把内部悬浮的大多数颗粒排斥或吸引抵达到液滴的边缘且最终留在液滴边缘,到溶液完全蒸发时,并沉积在表面上,从而形成的一个深色的圆环,而不是因悬浮颗粒为趋圆形减少的机械摩擦阻力,和有量子卡西米尔效应振荡助力,合流推动的结果?

11、例如有疏水策略的猪笼草,在雨后其叶子表面也会变得几乎无摩擦。一方面这种叶子像水杯的食虫植物,是用散发出的甜味,吸引蚂蚁、蜘蛛、甚至小青蛙;另一方面是它能在顶部形成一件光滑的外衣,把液体本身变成了疏水面。这种策略不同于荷叶效应的疏水,荷叶利用的是表面特殊纹理结构,使水滴聚集滑落。而且荷叶效应对一些有机物或复杂液体无效,表面刮擦后或在极端条件下液体反而会黏附或沉积在上面。

应用仿猪笼草技术,可研究出将来用于运输燃料和水的管道、如导尿管和输血系统的医用导管、自动清洁窗、无菌无垢表面、排斥冰的材料以及不留指纹或乱画痕迹等的抗粘表面。目前美国哈佛大学艾森伯格实验室将一种润滑液注入具有纳米微结构的透气性材料中,制成“灌注液体的光滑透气表面”(SLIPS)的疏水表面。这是一种极为光滑的SLIPS涂层材料,就像猪笼草不仅能滑倒昆虫,还能排斥多种液体和固体,几乎毫无阻滞,极轻微的倾斜都会让液体或固体从它表面上滑下来。

1)疏水策略的极性联系极小子流形,延伸到二次量子化和点内空间概念,极性也能用庞加莱猜想定理创新的弦膜圈说阐述。因为超弦理论的“开弦”和“闭弦”二次量子化,数学模型极性更直观。这是把整体对称和定域对称联系庞加莱猜想,设庞加莱猜想熵流有三种趋向:

14#
 楼主|王德奎 发表于: 2013-11-6 21:21:29|只看该作者
A、庞加莱猜想正定理:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球。

B、庞加莱猜想逆定理:如果一个点连续扩散成一个“闭弦”,它再连续收缩成一点,我们称“曲点”。那么在一个三维空间中,假如每一条封闭的曲线都能收缩成类似一点,其中只要有一点是曲点,那么这个空间就不一定是一个三维的圆球,而可能是一个三维的环面。

C、庞加莱猜想外定理:“点内空间”是三维空心圆球外表面同时收缩成一点的情况,或三维空心圆球外表面每一条封闭的曲线都收缩成一点的情况。即它不是指在一个三维空间中,假如每一条封闭的曲线都能收缩成一点的三维圆球,而且指三维空心圆球收缩成一个庞加莱猜想点的空间几何图相。

“曲点”和“点内空间”,正是来源于逆庞加莱猜想之外的“庞加莱猜想熵流”。因为类似轮胎的三维的环面,不能撕破和不能跳跃粘贴,是不能收缩成一点的,它的图相等价于“闭弦”,我们亦称为庞加莱猜想环或圈。所以庞加莱猜想中封闭的曲线能收缩成一点,是等价于封闭曲线包围的那块面,它类似从封闭曲线各点指向那块面内一点的无数条线,它的图相我们亦称为庞加莱猜想球或点。

唯象规范场超弦理论整体对称,“开弦”能产生“闭弦”,“闭弦”能产生“开弦”,但这属于“轨形拓扑学”。因为不能撕破和不能跳跃粘贴规定,是拓扑学的严格数学定义之一。而轨形拓扑学则规定可有限地撕破和有限地跳跃粘贴。我们没有特别说明,都是在拓扑学内论说量子真空。现在我们假定:拓扑学一般说来比轨形拓扑学更初等一些。如果不管“开弦”和“闭弦”何者是原初的或派生的,那么庞加莱猜想也许就同时联系着超弦理论的开弦和闭弦。即按庞加莱猜想正定理,开弦能收缩到一点,就等价于球面。按庞加莱猜想逆定理,闭弦能收缩到一点,是曲点,就等价于环面。它们都是整体对称的。同时,庞加莱猜想球点和曲点反过来扩散,也分别是球面和环面,也是整体对称的。

我们称标准的理想的“开弦”和“闭弦”,为唯象规范超弦场论的整体对称。而奇异超弦论是指,类似开弦能收缩到一点,等价于球面,但球面反过来对称扩散,却不能恢复成开弦这类情况。如果设定开弦等价的球点扩散不是向球面而是向定域对称的杆线扩散,称为“杆线弦”。其次化学试管类似的三维空间,也是能收缩到一点而等价于球面,所以球面的一条封闭线如果不是向自身内部而是向外部定域对称扩散,变成类似试管的弦线,称为“试管弦”。这样开弦的定域对称就有两种:杆线弦和试管弦。

同理,闭弦等价的曲点扩散不是向环面而是向定域对称的管线扩散,称为“管线弦”。套管类似的双层管外层一端封底,这类三维空间也是能收缩到一点而等价于环面,所以环面一端内外两处边沿封闭线,如果不是向自身内部而是分别向外部一个方向的定域对称扩散,变成类似套管的弦线,就称为“套管弦”。即闭弦的定域对称也就有两种:管线弦和套管弦。“杆线弦”及“试管弦”、“管线弦”及“套管弦”可以把它们看成类似一根纤维;这样把众多的这些纤维分别捆扎起来,也可以分别叫做杆线弦、试管弦、管线弦、套管弦”纤维丛,也可以像纺纱织布一样地进行编织,称为“编织态”。

“杆线弦”纤维丛类似一面墙或屏幕,两边是无极性的。但“试管弦”纤维丛的墙面或屏幕,两边有类似亲水性和避水性的极性。这种一个表面的疏水性和另以一个表面的亲水性共存的结构特点,使得试管弦这种结构表面同时具有超疏水和高粘附特性。同理,“管线弦”的可透性,使它无极性;但“套管弦”由于套管一端部分封了口,使墙面或屏幕也有强弱极性之分的有类似疏水性和亲水性共存的结构特点。

2)极性的量子极小子流形,除开上面二次量子化的“开弦”和“闭弦”分析与展开外,还可以从微观王国是到了一种“盲人摸象”的界面分水岭来理解。即量子力学越近“点内空间”的视界,这里包含虚数世界,根据是量子起伏的实验证明的。因为视界能量接近的0,不确定原理认为可以在瞬间变为实数或虚数的正负对称,然后又瞬间湮灭回0。所以经典物理学使用的动量、能量等,要变为用算符计算动量、能量等物理量。“盲人摸象”越近点内空间的视界,虚数出没,是经典物理的“点外”世界少有的。视界的极性来自量子起伏,原因也有它推动了这里的量子咖啡环效应和卡西米尔效应。这可延伸说明花状石墨烯/硅纳米锥复合纳米材料,有表面超疏水兼超高粘附力的特性。

部分图片、文章来源于网络,版权归原作者所有;如有侵权,请联系(见页底)删除
15#
 楼主|王德奎 发表于: 2013-11-6 21:21:54|只看该作者
3)“拓扑”什么?拓扑是整体性研究之一的工具,专门研究几何形象在几何元素的连续变形下保持不变的性质。小小的扰动不会改变几何对象的拓扑性质,连续形变的操作,如拉伸、弯曲、压缩等,不会改变一个连通区域的拓扑,或简单地说几何的基本性质。非连续的改变,如切割、剪断等,才会引起性质的改变。因此如果构成量子比特的物理元素是拓扑不变,基于这些量子比特进行运算的结果,也具有拓扑不变的性质。

中国科学理论体系能将原子论到超弦论这样轻松自如地统一运用,是因为从咖啡环到拓扑量子我国已经解决了什么是“拓扑量子”,并且给出了图像。这就是三旋理论最早给出了“拓扑量子全息”部分与整体相似,“部分”最重要的是自旋的三旋定义:

(1)面旋:指类圈体绕垂直于圈面中心的轴线作旋转。如车轮绕轴的旋转。

(2)体旋:指类圈体绕圈面内的轴线作旋转。如拨浪鼓绕手柄的旋转。

(3)线旋:指类圈体绕圈体内中心圈线作旋转。如地球磁场北极出南极进的磁力线转动。线旋一般不常见,如固体的表面肉眼不能看见分子、原子、电子等微轻粒子的运动。其次,线旋还要分平凡线旋和不平凡线旋。不平凡线旋是指绕线旋轴圈至少存在一个环绕数的涡线旋转,如墨比乌斯体或墨比乌斯带形状。

4)21世纪维尔切克说,量子维度上的运动所带来的变化不是位移,这里没有距离的概念。而它就是自旋的变化。这种“超光速平移”,将给定内在自旋的粒子变成不同的粒子。这是用对称概念对自旋作的语境分析,自旋、自转、转动的语义学定义是:

(1)自旋:在转轴或转点两边存在同时对称的动点,且轨迹是重叠的圆圈并能同时组织起旋转面的旋转。如地球的自转和地球的磁场北极出南极进的磁力线转动。

(2)自转:在转轴或转点的两边可以有或没有同时对称的动点,但其轨迹都不是重叠的圆圈也不能同时组织起旋转面的旋转。如转轴偏离沿垂线的地陀螺或廻转仪,一端或中点不动,另一端或两端作圆圈运动的进动,以及吊着的物体一端不动,另一端连同整体作圆锥面转动。

(3)转动:可以有或没有转轴或转点,没有同时存在对称的动点,也不能同时组织起旋转面,但动点轨迹是封闭的曲线的旋转。如地球绕太阳作公转运动。

5)我国最先做出拓扑量子三旋动画视频是电子计算机专家邱嘉文先生。不信,你在电脑上打出“三旋动画”汉字,上网用“百度搜索”,就能找到“三旋动画集”的视频条目,点击或转播在电视荧屏上,就可以看到三旋动画视频。

做这个视频的邱嘉文先生,是中国农业大学电力系统及其自动化硕士研究生毕业。目前是广东珠海威瀚科技发展有限公司副总经理,他是新中国通过三旋理论熏陶培养起来的第一个企业总经理。三旋动画视频与弦论、拓扑量子联系,还可以是从能量函数处理纽结不变式的角度推广。其道理是:一个物体作平动,取其一标记点的轨迹,可以看成一条流线,能与一条未打结的绳线对应;自旋一周则与未打结的绳圈结应。用这种思想处理类圈体三旋的62种自旋状态,单动态是未打结的环或封闭线的纽结结构;双动态和多动态是不只一个环的纽结结构。如此用二维图(平面图)和琼斯多项式类似的纽结不变式描述,可将某些场的能相图变为形相图来计算,也能将形相图改为对能相的计算。因此三旋的渗透能更好地体现其真实的物理意义。

12、生物全息律是开创我国科学未来的先声,是今天的尽情应用。真理是越辩越明──“部分与整体相似”不管是生物基因绕组,还是物理的量子纠缠,最终通向的极小子流形的拓扑。而有拓扑量子就有拓扑量子场论。这类量子场论开始于20世纪70年代施瓦茨的阿贝尔的陈-塞黑斯场论研究。80年代末在阿蒂亚启发下,弦论学家威滕发展了三个拓扑量子场论研究:一个就是非阿贝尔的陈-塞黑斯场论;第二个由超对称杨-米尔斯场论扭变得到;第三个由超对称西格玛模型扭变得到。进入21世纪,威滕等人又研究了具有更多超对称的杨-米尔斯场论的扭变,并将数学中的几何朗兰兹对偶解释为量子场论中的强弱对偶。威滕等人进一步发现,西格玛模型,陈-塞黑斯场论,以及超对称杨-米尔斯场论之间有千丝万缕的联系,它们都可以包含在弦论或者M-理论中。这类量子拓扑学有三个主题:a、量子群;b、三维拓扑场论;c、二维共形场论。

1)用三旋动画视频联系的拓扑性质,可揭示传统的拓扑量子场论任意子的量子计算机原理中的纰漏。因为体旋实际比面旋复杂,而这一点却让量子计算机原理研究的专家所忽视,例如Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图时,对量子位不动的几种陀螺旋转,就分辨不清,明显的错误是把陀螺绕Y轴的体旋称为“进动”,这是不确切的。

16#
 楼主|王德奎 发表于: 2013-11-6 21:23:51|只看该作者
2)三旋动画拓扑量子视频联系崔琦分数电荷量子霍尔效应研究,三旋动画可以直接观察到类似具有分数电荷和分数统计的粒子,它们在时空中的演变,提供了理解量子计算的快车道。如三旋拓扑序导致的基态简并、分数电荷和分数统计,以及相关的辫子群代数联系对应的量子不变量纽结、边缘态隧穿、输运等测量,提供参考。

3)拓扑量子的纠错研究,如中国科技大学微尺度物质科学国家实验室潘建伟及陈宇翱、刘乃乐等教授,成功制造出并观测到了具有拓扑性质的八光子簇态,并将此簇态作为量子计算的核心资源,实现了拓扑量子纠错。

4)拓扑量子的薄膜研究,上海交大低维物理和界面工程实验室贾金锋、钱冬、刘灿华、高春雷等教授,已经制备出最适合探测和操纵Majorana费米子的人工薄膜系统。

5)量子自旋霍尔拓扑绝缘体的研究,拓扑量子计算在美国得到极大的重视,微软公司在其加州的研究所中网罗了大量理论人才,从事拓扑量子计算方面的开创性研究,并每年投入数百万美元直接支持加州理工学院、芝加哥、哥伦比亚、哈佛等大学相关的分数量子霍耳效应的实验研究。

6)我国拓扑量子计算研讨会活跃,如早在2011年5月21至22日,由上海微系统所蒋寻涯研究员、上海交大刘荧教授和浙大万歆教授联合牵头开的“普陀论拓扑”专题研讨会;2011年11月25日至27日,由理论物理国家重点实验室资助的“理论物理前沿研讨会—凝聚态物理中的拓扑物态和量子计算研究专题研讨”,其目的就是要推进我国在拓扑量子物态与拓扑量子计算、拓扑绝缘体与相关系统、拓扑超导体等研究。

7)拓扑量子在交叉科学中的应用,如非相对论物理学中的拓扑量子数,特点是对系统中的缺陷不敏感,因此数在物理量的精确测量中变得非常重要,并提供了最好的电压和电阻的标准。在有机化学中,包括基团极化效应参数和拓扑立体效应指数的计算;有机分子拓扑量子键连接矩阵的构造以及分子结构特征参数的提取,矩阵特征根、拓扑量子轨道能级、原子电荷、化学键的键级等参数的计算;应用上述分子结构参数,对烷烃、单取代烷烃、链状烯烃、含C=0键和N=0键有机化合物、芳香烃和极性芳香化合物等各类有机物的热力学性能、化学反应性能、光学性能、色谱性能、价电子能量、酸性和生物活性进行的相关研究,等等

部分图片、文章来源于网络,版权归原作者所有;如有侵权,请联系(见页底)删除
您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

© 2002-2024, 蜀ICP备12031014号, Powered by 5Panda
GMT+8, 2024-6-10 20:25, Processed in 0.078000 second(s), 8 queries, Gzip On, MemCache On
同板块主题的 后一篇 !last_thread! 快速回复 返回顶部 返回列表